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ABSTRACT 
Data capture and analysis are transforming entire industries, 
enabling novel solutions developed from a numeric 
evaluation of real-world phenomena. This generally relies on 
gathering data on physical conditions and users to create 
accurate, predictive models and provide customized 
solutions. Increasingly, data-driven approaches are also 
becoming a part of architectural design, with the goal of 
creating user-centric and sustainable buildings. However, 
while simulation software can accurately model 
deterministic physical effects, it is still difficult to 
incorporate stochastic effects related to human factors. This 
paper analyses one aspect of occupant behavior – window 
operation – to give designers an intuition of the impact of 
occupant behavior and associated modelling approaches on 
building performance. To this end, behavioral patterns 
observed in a previous field study were incorporated into a 
dynamic energy simulation and compared to a 
deterministically modelled baseline. While the stochastic 
models appear to better capture the dynamic and 
probabilistic nature of occupants’ actions, the present study 
highlights the extent to which the assumption with regard to 
occupant behavior can influence the simulation-assisted 
performance based design process. The paper also makes 
suggestions as to how to interpret such simulation results in 
a way that quantifies the intrinsic uncertainty in stochastic 
models. We argue that increased data capture and analysis of 
building inhabitants could lead to a better understanding of 
their behavior, thereby affecting the decision-making 
process in favor of a more sustainable and responsive 
architecture. 
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1 INTRODUCTION 
Many industries are now relying on gathering user data to 
create predictive models and provide tailored products. 

There are several indicators of architecture also becoming an 
increasingly data-driven field: performance based contracts 
holding designers accountable for whether their buildings 
perform in the real world as on paper; green building 
certifications requiring post-occupancy evaluations (POE); 
smart building concepts of capturing occupant data to auto-
adjust building systems in real-time. In fact, it can be argued 
that there is a rising cultural expectation of customizable and 
responsive systems, prompting architects to consider 
incorporating data-driven design approaches into 
architectural practice. 
Computational design has enabled architects to use 
simulation software to model various performance aspects of 
proposed building designs, for instance in respect to their 
thermal characteristics and structural rigidity. While these 
applications facilitate modelling deterministic physical 
effects with largely satisfactory accuracy, the predominant 
metrics for which architects seek to optimize their designs 
often relate to how the future occupants will use and perceive 
a space. Anticipating such phenomena is more challenging 
since they are intrinsically stochastic and multivariate. For 
example, modelling occupants’ interactions with building 
control devices (such as windows, shades, etc.) generally 
involves extracting statistical models from data obtained in 
field studies. These are then analyzed to find a link between 
environmental parameters and the probability of control 
devices being operated at any given time. Inclusion of such 
probabilistic models into performance-based design process 
yields new opportunities and threats toward creation of 
occupant-centric buildings, which will require systematic 
studies in this emerging field of research in the building 
industry. 

2 OBJECTIVE 
This paper analyses a single aspect of occupant behavior, 
namely window opening behavior. Many years of comfort 
research have demonstrated the advantages of natural 
ventilation for sustainable building concepts and human 
comfort [7]. Natural ventilation can have large impacts on 
the performance of buildings and the comfort of its 



inhabitants [8]. However, providing occupants with adaptive 
environmental controls creates uncertainty of whether they 
will be used efficiently. Traditionally, energy simulation 
software is used to model human behavior deterministically, 
e.g. assuming that windows are opened at a specific 
predetermined indoor temperature. Such over-
simplifications of occupant behavior have often been 
identified as a cause for the considerable discrepancies 
frequently observed between building simulation and built 
reality [4, 9]. Being able to more accurately model human 
behavior in buildings would therefore not only help 
architects design more sustainable and user-centric spaces 
[1], but also make physical simulations more accurate. 
Several recent field studies have therefore analyzed occupant 
behavior in terms of adaptive control behavior to inform 
energy models [3, 5, 9]. 
In this context, this paper aims to apply a data-driven 
stochastic model of window operation into early stage 
building simulations; to give designers an intuition of the 
effect that occupants can have on the performance of 
buildings, as well as to describe methods of interpreting the 
intrinsically uncertain results from predictions of stochastic 
behavior.  

3 METHODS 

3.1 Field Data and Statistical Models 

The model used for the following simulations was obtained 
from [11], who conducted a one-year field study in a 
naturally ventilated office space in Vienna, Austria. The 
occupants’ presence, state of windows and several 
environmental parameters (including indoor and outdoor air 
temperature) were monitored on a continuous basis. A 
logistic regression model was fit to the field data: 
 

𝑃𝑃 =
exp (𝛽𝛽0 + 𝛽𝛽1𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛽𝛽3𝜃𝜃𝑖𝑖𝑖𝑖𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜)

1 + exp (𝛽𝛽0 + 𝛽𝛽1𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛽𝛽3𝜃𝜃𝑖𝑖𝑖𝑖𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜)
 

 

in which P is the probability of opening or closing a window, 
θin and θout are indoor and outdoor temperature respectively, 
and β0 to β3 are regression coefficients. These modeling 
techniques have been widely used in the studies pertaining to 
occupant behavior modeling [e.g., 3,7,11]. For the current 
study, the authors used the models developed in [10], which 
also analyzed inter-occupant diversity by obtaining 
regression coefficients for each occupant in the field study 
separately (Table 1). To develop an intuition for the range of 
possible behavioral patterns and their effects on building 
performance, we used a best-worst-case approach by running 
the model for the most ‘active’ and ‘passive’ behaviors found 
in the field study (Figure 1). As for the validity of these 
models, the aforementioned study demonstrates that the 
models provide a better representation of occupants’ 
interactions with windows in a free-running office building 
in Viennese climate [10]. 

3.2 Model Parameters and Implementation 

We used the Rhino/Grasshopper architectural software 
platform to generate the geometry, set the simulation 
parameters, trigger the simulation and visualize the results. 
The simulations were run with EnergyPlus, using the 
Ladybug/Honeybee plugins for Grasshopper as an interface 
(figure 2). Dynamically changing window states according 
to current environmental conditions at each time step 
required inputting custom EnergyPlus Runtime Language 
(ERL) code; in each EnergyPlus simulation timestep, sensor 
objects record the occupancy, θin, θout and current window 
states; the probability of the window opening in the next 
timestep is then calculated using the logit function with the 
appropriate coefficients and variables. The next state is 
determined via Inverse Transform Sampling Method, 
involving a comparison of the resulting probability P with 
random numbers. Comfort temperatures θcomf were 
calculated using Ladybug’s implementation of the Adaptive 
Thermal Comfort model from ASHRAE 55 [2] and 
compared to the simulated indoor temperatures.  
 

Table 1. Regression coefficients from [11]. 

Action Variable Passive Aggregate Active 

Opening 

Intercept -10.6882 -22.4190 -10.4233 

θin 0.2187 0.8031 0.0905 

θin 0.2100 0.3130 0.2047 

Interaction -0.0052 -22.4190 -0.0034 

Closing 

Intercept 23.9665 16.6416 7.9830 

θin -1.0969 -0.7013 -0.4323 

θin -0.9172 -0.5011 -0.3756 

Interaction 0.0376 0.0186 0.0144 
 

 
Figure 1. Probability (P) of opening (a) and closing (b) a window 

based on indoor (θin) and outdoor (θout) air temperature, for 
average (gray), ‘active’ (yellow) and ‘passive’ (blue) occupants. 

 

Figure 2. Workflow. 



To focus on the implication of occupant behavior models for 
the early design state simulation based explorations, we did 
not attempt to remodel the office space from the field study. 
Instead, a single rectangular naturally ventilated office space 
with the dimensions 7×10×4m (width×length×height) was 
chosen for the climate of Vienna, Austria, from which the 
field study data stems. The north-south oriented room had a 
30% glazing portion in the north and south facades. The 
office space was simulated to be occupied every day between 
9am and 5pm. Other schedules and constructions were 
obtained from the “Closed Office” zone program defaults. 
Changes of window states were allowed only during office 
hours; open window states at 5pm therefore led to night 
ventilation. We adopted a simplified approach in 
representing the social context in the multi-occupant office, 
in that cross-ventilation was chosen for the entire simulation. 
That is, an open window state signifies that both windows 
were open. θin values were calculated for an entire year with 
hourly resolution for 4 window operation models: 
1. Deterministic (windows were opened when θin > 24 °C); 
2. Determined by logit function for aggregated field results; 
3. Determined by logit function for ‘active’ user; 
4. Determined by logit function for ‘passive’ user. 

4 RESULTS  
Each simulation was run via Honeybee in a sub-hourly 
resolution for an entire year (8760 hours). For the cases 2-4, 
the simulation was conducted for 100 times to obtain the 
distribution of results. Figure 3 shows an excerpt of the 
outputs documented in simulation 2 during a summer week. 
In the visualized timeframe, θin was continuously higher than 
θout. Opening a window therefore had a cooling effect; longer 
periods of window openings, especially during night 
ventilation, caused θin to approach θout. The heat maps in 
figures 4-7 visualize window states, as well as the extent to 
which θin differed from θcomf (obtained from the adaptive 
thermal comfort model) for each of the simulations. These 
allow to visually detect that window openings were much 
more common in the deterministic model, which reacted 
immediately to rising temperatures with window operations. 
The graphs showing the deviation from θcomf illustrate that 
for the larger part of the year, θin was below θcomf. Higher θin 
values, and therefore increased thermal discomfort, was 
observed to be shifted towards the afternoon hours. We used 
three metrics to summarize these effects (Table 2), taking 
only into account the model results during office hours: the 
percentage of hours with open windows, the percentage of 
hours where θin was higher than θcomf, and the average 

 
Figure 3. Excerpt from the results of simulation 2. 

 
Figure 4. Results from simulation 1 (deterministic model). 

 
Figure 5. Results from simulation 2 (aggregated occupants). 

Figure 6. Results from simulation 3 (‘active’ occupant). 

 
Figure 7. Results from simulation 4 (‘passive’ occupant). 



deviation of θin from θcomf when θin was higher than θcomf. 
Simulations with higher proportions of window openings 
incurred lower occurrences of thermal discomfort due to 
overheating. The deterministic model over-predicted 
comfort within the space even as compared with the ‘active’ 
stochastic model. There were also large inter-occupancy 
differences when using the logistic regression models; the 
‘passive’ model predicted an average 4.55 K above θcomf in 
comparison to only 1.7 K for the ‘active’ model. 

Table 2. Simulation results summarized for office hours. 

Description % hours 
with open 
windows 

% hours 
when θin > 

θcomf 

Average 
Δθ when 
θin > θcomf 

1 Deterministic 11% 37% 1.3 [K] 

2 Logit (aggregate) 14.25±1.23 43.26 ± 0.44 3.09±0.01 

3 Logit (passive) 3.43±0.66 50.04±0.27 4.55±0.01 

4 Logit (active) 19.28±0.63 38.26±0.33 1.72±0.0 

5 CONCLUSION 
The motivation for writing this paper was to address the trend 
towards data-driven design and the increasing expectations 
of occupants and clients towards user-centeredness. As an 
example, we focused on a single aspect of occupant behavior 
– namely window opening patterns – and how to include this
into the design process. We implemented a model derived
from field data into a common architectural flexible
modelling software.
The results from our case study showed a large deviation 
between the common way in which architects simulate 
indoor thermal comfort in early design, and the results from 
statistical models based on field data. While the stochastic 
models can in principle better capture the dynamic nature of 
occupants’ actions, the study showed that a standard model 
can over-predict comfort. While the current study lacks 
verification and therefore cannot show which method is more 
accurate, the observed deviations show that different design 
solutions may have been driven from the parametric studies. 
This necessitates further studies toward finding fit-for-
purpose occupant behavior models for different simulation-
based building design enquiries. In addition, when 
incorporating field data, we found that inter-occupant 
behavioral diversity had a large impact on simulation results. 
Simulations of the kind reported in this paper are proposed 
to support the choice between free-running, mixed-mode and 
air-conditioned options for a given design, as well as to 
determine an appropriate number of operable windows, 
which can affect the segmentation of the façade as well as 
the configuration of indoor spaces to make operable 
windows accessible. Our case study supports the notion that 
higher volumes of data collection in architecture are useful 
to foster new insights on occupants and to incorporate human 
factors into the computational design process. There still 
exists only limited field study data on occupant behavior, 

with observations varying strongly, suggesting that there are 
many factors influencing behavior. This investigation was 
limited in that it only attempted to predict window operation, 
and only did so using temperature as a driving variable. 
Simulating energy consumption and comfort reliably 
requires inputting many parameters that are usually not 
known in early design. Confidence in the results must 
therefore be managed, and the analysis geared more towards 
a qualitative understanding of the range of possible 
outcomes, rather than a primary driver in decision-making. 
Moreover, as the existing occupant behavior models are 
mainly derived from limited data sets, they must be subjected 
to cross-validation studies in different settings [6]. Analyzing 
results obtained from such models requires caution and 
skepticism. Rather than expecting model outputs to dictate 
design materialization, they need to be evaluated critically 
and in combination with other design considerations. 
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