
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=utad20

Technology|Architecture + Design

ISSN: 2475-1448 (Print) 2475-143X (Online) Journal homepage: http://www.tandfonline.com/loi/utad20

Model-based Optimization for Architectural
Design: Optimizing Daylight and Glare in
Grasshopper

Thomas Wortmann

To cite this article: Thomas Wortmann (2017) Model-based Optimization for Architectural Design:
Optimizing Daylight and Glare in Grasshopper, Technology|Architecture + Design, 1:2, 176-185,
DOI: 10.1080/24751448.2017.1354615

To link to this article: https://doi.org/10.1080/24751448.2017.1354615

Published online: 28 Nov 2017.

Submit your article to this journal

Article views: 158

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=utad20
http://www.tandfonline.com/loi/utad20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751448.2017.1354615
https://doi.org/10.1080/24751448.2017.1354615
http://www.tandfonline.com/action/authorSubmission?journalCode=utad20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=utad20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/24751448.2017.1354615&domain=pdf&date_stamp=2017-11-28
http://crossmark.crossref.org/dialog/?doi=10.1080/24751448.2017.1354615&domain=pdf&date_stamp=2017-11-28

176

T
A

D
 1

 :
2

Model-based Optimization for Architectural Design

177WORTMANN

P
E

E
R

 R
E

V
IE

W
 / S

IM
U

L
A

T
IO

N
S

Thomas Wortmann
Singapore University of Technology and Design

Model-based optimization is an innovative
optimization strategy and particularly ap-
propriate for time-intensive performance
simulations. To demonstrate this appropriate-
ness, this paper reviews simulation-based
optimization algorithms and benchmarks
several (single- and multi-objective) optimiza-
tion tools on two problems involving annual
daylight and glare simulations. The benchmarks
demonstrate that model-based optimization
outperforms other (single- and multi-objective)
approaches on time-intensive, simulation-
based optimization problems and thus puts
new applications within reach. In this way,
model-based optimization aids architectural
designers and consultants to develop more
resource- and energy-efficient buildings.

Model-based
Optimization for
Architectural Design:
Optimizing Daylight
and Glare in Grasshopper

178

T
A

D
 1

 :
2

Model-based Optimization for Architectural Design

Introduction and Background
Structural, building energy, and daylighting simulations play a key role in architectural
design processes. They allow the quantitative evaluation of design variants, while para-
metric modeling allows the fast and automated generation of design variants from
numerical parameters.1 When designers combine parametric models with performance
simulations, optimization algorithms find well-performing design variants. Consequently,
simulation-based optimization is increasingly applied in leading architectural and engi-
neering practices such as SOM2 and ARUP3 and was, for example, used in the design of
the Louvre Abu Dhabi.4

Model-based optimization is an innovative, machine learning-related optimization
strategy and particularly appropriate for time-intensive performance simulations. To
demonstrate this appropriateness, this paper benchmarks several optimization tools in
Grasshopper—a popular software for parametric design and performance simulations—
on two problems involving annual daylight and, for one problem, glare simulations. These
benchmarks include the first freely available, model-based optimization tool aimed at archi-
tectural design optimization (ADO), Opossum (OPtimizatiOn Solver with SUrrogate Mod-
els), of which the author is the lead developer. (Opossum is available as a free download at
www.food4rhino.com/app/opossum-optimization-solver-surrogate-models.)

Model (or surrogate)-based optimization methods find good results with small num-
bers of simulations.5 This high speed of convergence is important for sustainable design
problems such as daylighting and building energy, where a single simulation takes several
minutes or hours to complete. Under such conditions, it is impractical to perform the thou-
sands of simulations required by population-based metaheuristics such as genetic algo-
rithms (GAs).

Global Black-Box Optimization
Unlike the majority of optimization methods, global black-box (or derivative-free) meth-
ods do not need mathematical formulations of optimization problems and—unlike local
optimization methods—do not get trapped in local optima but instead consider the whole
design space.

Accordingly, they are appropriate for simulation-based optimization problems in ADO.
Such problems define the relationship between variables and performance objectives not
with a formula but by evaluating a parametric model with numerical simulations (Figure 2),
and often exhibit local optima and complex interdependencies between variables.

Global black-box methods must compromise between exploring the design space as a
whole with locally exploiting promising regions. They fall into three broad categories: Direct
search, model-based methods, and metaheuristics. The following subsections discuss the
three categories, before introducing Pareto-based optimization.

Direct Search
Direct search methods evaluate a deterministic sequence of solutions without try-
ing to approximate the design space (Figure 3a). The well-known Hooke-Jeeves and
Nelder-Mead Simplex algorithms are local direct search methods, while DIRECT6 is a
more recent, global method. DIRECT subdivides the design space into hyper-boxes and

v Figure 1 (Previous spread).
Radial mapping of (most of) the
simulated solutions for Problem
2. The position of every circle
represents the solution's
parameters, and the color its
performance in terms of a
weighted sum of daylight and
glare, on a logarithmic scale.
The background colors are
interpolated with barycentric
coordinates.

The better solutions on the
left (<22%) indicate that the
screen should be more porous
on the top and less porous on
the bottom (Figure 9). There
are several very good (<20%)
solutions that do not form a
clear pattern, which indicates
several distinct screen designs
that are close to optimal.

r Figure 2. Opossum in
Grasshopper. The curves on
the left link to the variables
and the one on the right to the
objective.

w Figure 3. Three types of
simulation-based, black-box
optimization: (a) Optimize the
output of the exact simulation
directly, (b) optimize the
approximating output of the
surrogate model constructed
from prior simulation results,
and (c) optimize and update
the surrogate model during the
optimization process.

179WORTMANN

P
E

E
R

 R
E

V
IE

W
 / S

IM
U

L
A

T
IO

N
S

excludes hyper-boxes from further subdivision by approximat-
ing the maximum change of the performance objective for each
box (Figure 4). This paper presents results for DIRECT as imple-
mented in the free, open-source NLopt library.7

Model-based Methods
Model-based methods approximate the design space as a whole by
constructing surrogate models of the implicit mathematical formu-
lations of simulation-based problems. Surrogate models are much
faster to calculate than simulations and can accelerate optimization
processes. However, as approximations, surrogate models are less
accurate than the underlying simulations.

Accuracy is a concern especially for approaches that complete-
ly replace time-intensive simulations with surrogate models and
then apply optimization (Figure 3b). Improving the models’ accu-
racy requires a larger sample size, which can negate the initial
speed advantage.

In contrast, model-based methods iteratively build and refine
models during the optimization process (Figure 3c). At every iter-
ation, a model-based method searches its model for a promising
solution (deterministically, randomly, or with a metaheuristic). It
simulates the found solution and updates the model with the exact
simulation results (Figure 5). A model-based method thus improves
its model’s accuracy during the optimization process. For the sec-
ond optimization problem discussed in the following section, the
final models constructed by the model-based algorithm deviated at
most 53% from the exact objective value, but only 11% on average.

Trust region methods employ local models, while more recent,
global model-based methods approximate design spaces glob-
ally. Global methods construct surrogate models with a variety of
statistical (e.g., Polynomial Regression and Kriging) and machine
learning-related (e.g., Radial Basis Functions, Neural Networks
and Support Vector Machines) techniques. Due to their ability to
model complex design spaces, Kriging and radial basis functions are
particularly suitable for simulation-based problems from engineer-
ing design8 and, by extension, ADO. Opossum, the optimization
tool presented here, interpolates design spaces with radial basis
functions.9

Global model-based methods are particularly effective for opti-
mizing problems with time-intensive simulations and complex rela-
tionships between variables and objective.10 They converge—that
is, find good solutions—quickly by alternating between evaluating
the surrogate model, which is fast but approximate, and the exact
simulation, which typically is much slower. The surrogate model not

only improves convergence, but offers opportunities for visualiza-
tion and interaction that are relevant for ADO.11

Compared to other types of optimization methods, model-based
methods require additional calculations to construct and search
the surrogate model at every optimization step. However, when a
single function evaluation takes more than a few seconds, the time
required for these calculations is negligible.12

This study considers the performance of RBFOpt,13 a free and
open-source, state-of-the-art library for model-based optimiza-
tion powering Opossum. Of the twenty-eight solvers competing
in the 2015 GECCO Black-Box Competition, which consisted of
1.000 mathematical benchmark problems with two to sixty-four
variables, RBFOpt ranked seventh overall and first among the
open-source solvers.14

Based on previous benchmark results from building energy
problems,15 RBFOpt’s continuously updated radial basis function
model quickly identifies promising areas of the design space, but,
in some cases, hinders the algorithm from focusing on promising
areas. In other words, RBFOpt excels in global search but has weak-
nesses in local search. (RBFOpt v3.0.1, which dates from after the
completion of the below experiments, addresses these weaknesses
by incorporating a trust region method.)

RBFOpt is controlled by more than forty parameters. Depending
on individual problem characteristics, some of these parameters
drastically affect RBFOpt’s performance.16 The most importance
choices are between different optimization (Gutmann17 and
MSRSM18) and interpolation methods. (RBFOpt v3.0.1 introduces
automatic model selection as a default. With this setting, the algo-
rithm tries to choose the most accurate interpolation method—lin-
ear, multi-quadratic, cubic and thin plate spline—for each problem.)
Opossum’s graphical user interface (GUI) reduces RBFOpt’s com-
plexity into three tabs that afford increasing levels of control (Fig-
ure 7) and offers presets that are based on intensive testing with
mathematical test functions.

Metaheuristics
Stochastic, population-based metaheuristics19 often are inspired
by natural processes, such as genetic evolution or “swarm intelli-
gence,” and require extensive tuning of optimization parameters.
Due to a lack of mathematical proofs of convergence and inferior
performance on benchmarks,20 the mathematical optimization
community regards them as “methods of last resort.”21

Nevertheless, metaheuristics are by far the most popular cat-
egory of optimization methods in ADO, with GAs as the most

180

T
A

D
 1

 :
2

Model-based Optimization for Architectural Design

prominent exponent.22 Reasons for this popularity include a rela-
tive ease of implementation, wide availability, applicability to a wide
range of problems, and a perception that metaheuristics are espe-
cially appropriate for complex, simulation-based problems.23 This
paper presents results for single- and multi-objective GAs, particle
swarm optimization (PSO) and simulated annealing (SA).

GAs evolve a population of solutions through genetics-inspired
operations (Figure 6), such as crossover, mutation, and selection.
Schooling behaviors exhibited by, for example, birds and fish inspire
PSO, where a “swarm” of solutions converges gradually in a good
region of the space. SA considers only a single solution. Mimicking
the movement of an atom in a cooling metal, the solution initially
changes more randomly and stabilizes as the “temperature” drops.

Pareto-based Optimization
Pareto-based, multi-objective algorithms, which often are GAs,
search for solutions that perform well in terms of more than one
performance objective. This approach is popular in ADO, but less
so in the mathematical optimization community, leading to a com-
paratively small number of optimization methods and benchmark
results.

This paper considers a benchmark problem with the two objec-
tives of daylight and glare, but combines the two into a single

objective by subtracting them from each other. Alternatively, one
can express multiple objectives as “soft constraints,” for example,
by penalizing the weight of a structure when it exceeds stress or
deflection constraints.24

Pareto-based algorithms do not define such weighted or penal-
ized sums, but instead optimize all objectives in parallel. Pareto-
based optimization is useful only when there is a tradeoff between
objectives: for example, allowing more daylight into a room can
lead to more glare. Pareto-based optimization explores such trad-
eoffs by searching for nondominated solutions, that is, solutions
where improving one of the objectives is only possible by worsen-
ing others.

However, since Pareto-based optimization aims to not only find
good solutions, but a set of nondominated solutions that represent
different tradeoffs, it is less efficient than its single-objective coun-
terpart. For example, in a benchmark of a building energy problem
with two objectives, it took 1400–1800 function evaluations for
the Pareto fronts to stabilize.25

The ADO literature does not address the efficiency difference
between single- and multi-objective algorithms. For example, one
paper characterizes Pareto-based optimization as “getting more
for less” and mentions computation time only as a general limita-
tion.26 Similarly, a foundational paper perceives an affinity between

r Figure 5. Diagram of three iterations of a global, model-based algorithm. The dashed lines indicated the approximated design space.

r Figure 4. Diagram of three iterations of the DIRECT algorithm. Note how DIRECT subdivides promising regions of the design space while ignoring others.

r Figure 6. Diagram of three iterations of a genetic algorithm.

181WORTMANN

P
E

E
R

 R
E

V
IE

W
 / S

IM
U

L
A

T
IO

N
S

the many tradeoffs addressed by architectural design and the com-
paratively smaller number of multiple objectives addressed by
Pareto-based optimization, but acknowledges the performance
tradeoffs of this approach only in a general sense.27

This paper speculates that architects often prefer Pareto-based
optimization, because it offers a range of alternatives rather than a
single result and not because it accurately represents trade-offs. It
evaluates apples as oranges, and vice versa, by evaluating the Pare-
to-based GA HypE28 as a single-objective algorithm and comparing
the Pareto fronts found by HypE with the fronts found implicitly by
the five single-objective algorithms.

Optimizing Daylight and Glare
To evaluate RBFOpt and Opossum, we compare its performance
with the remaining global solvers available in Grasshopper: the GA
and SA included in Galapagos,29 the PSO of Silvereye,30 the DIRECT
algorithm included in Goat and HypE included in Octopus.31 We
test the solvers on two problems involving time-intensive daylight-
ing simulations: optimizing a screened façade with discrete louver
angles for daylight and optimizing a perforated façade with con-
tinuous opening sizes for daylight and glare. We simulate daylight
and glare with DIVA-for-Rhino 4.0.32

Problem 1 (15 Discrete Variables)
The first optimization problem, defined by Wortmann et al.33 and
presented here with new and expanded benchmark results, con-
siders a single room that is located on the Southwest corner of a
building in Singapore (Figure 8).

The room has two facades, one with nine façade components
and one with six. Every façade component has micro-louvers,
which, for each façade component, can take angles between 0° and
180° (in increments of five). In other words, there are 37 daylight-
modulating types of façade components.

The optimization problem aims to find a configuration of façade
components that maximizes Useful Daylight Illuminance (UDI).
UDI measures the annual percentage of time during which a sen-
sor point receives an amount of daylight that is sufficient for office
work, while avoiding glare and excessive heat gains (300–3000
lux). One simulates UDI via a grid of sensor points (Figures 8 and
9).34

In addition, we penalize configurations with angle differences
larger than 10 degrees between neighboring façade components

to ensure a coherent appearance of the façade and a subtle modu-
lation of daylight. The penalty function in the following equation
computes a penalty value pi for an individual façade component
with angle di. If the angle difference with the previous neighbor
is smaller than ten degrees, the penalty pi is zero; otherwise, it is
a squared error term. The minimization objective is 100% minus
average UDI u(x) plus the sum of the penalties of the fifteen façade
components p(x):

min f (x)=1.0−ū(x)+ pi(x)
i=0

n∑

On an Intel Xeon E5-1620 CPU with sixteen threads and 3.6
GHz, one evaluation of this objective, that is, generating the para-
metric geometry and performing the daylighting simulation, takes
about 75 seconds.

Problem 2 (40 Continuous Variables)
The second problem, defined by Wortmann35 and presented
here with a more rigorous comparison of the Pareto fronts, also
considers a room in Singapore (Figure 9). The room has a south-
facing façade, perforated by 1.692 openings of varying sizes. The
continuous weights of a grid of forty attractor points, which are
the problem’s variables, controls these sizes and thus the façade’s
appearance and daylight performance.

This optimization problem aims to find a façade design that
maximizes UDI and minimizes Daylight Glare Probability (DGP).
DGP measures glare as a percentage for a specific camera view
and point-in-time and classifies this percentage as impercepti-
ble, perceptible, disturbing, or intolerable.36 A recent evaluation
of five glare indices concludes that all indices exhibit inaccuracies
and inconsistencies. However, the authors state that “DGP shows

r Figure 7. Opossum’s GUI. The first tab lets users choose one of three pre-sets of parameters, and start and stop the optimization. The second tab
provides options for benchmarking. The third tab offers full control by accepting command line parameters for RBFOpt.

182

T
A

D
 1

 :
2

Model-based Optimization for Architectural Design

the best evaluation performance among the five indices” and that DGP “would be
still very effective when we would like to find out whether or not discomfort glare
exists,” which is the case for the problem at hand.37

Although a more realistic glare assessment requires several camera views
representing the users’ true field of view, we calculate this value only for a single
camera to hasten the many runs required for benchmarking. To further reduce
calculation time, we approximate annual glare as an average of 59 representative
daylight hours instead of a full annual glare simulation.38 Although less accurate
than a full annual simulation, this approach yields a good qualitative assessment
of the presence or absence of discomfort glare.

Assuming that quality of daylight and avoidance of glare are equally important,
subtracting average annual DGP g from average annual UDI u yields a single min-
imization objective (both UDI and DGP are in the range [0,1]):

 min f (x)=(1.0−u(x)+ g(x))/2

On an Intel Xeon E5-1620 CPU with sixteen threads and 3.6 GHz, one simula-
tion of UDI and approximated annual glare takes about 90 seconds.

Methodology
We optimize both problems for 200 function evaluations: ten times for each
nondeterministic solver (RBFOpt, GA, SA, PSO, and HypE) and one time for the
deterministic DIRECT.

Choice of parameters significantly affects the performance of optimiza-
tion algorithms, especially for metaheuristics, and is problem-dependent.39
Nevertheless, we assume sensible default parameter choices on part of the solv-
ers’ authors. Sensible defaults are important when, as in architectural practice,
time pressure does not allow for extensive parameter tuning but calls for solvers
that are efficient and immediately usable by nonexperts. Accordingly, we employ
default parameters, except for the GA and HypE, where we halve the population
sizes to 25 to achieve a larger number of generations.

Following standard benchmarking methodology, we evaluate the solvers rela-
tive to the number of function evaluations, that is, simulations, and not relative to
running time. This methodology ensures the results' independence from comput-
ing speed and implementation details. In practice, compared to the time required
for simulations, running time differences between solvers often are insignificant.

We employ two evaluation criteria: speed of convergence and stability. Speed
of convergence, which is the more critical, measures how fast an algorithm
approaches the optimum in terms of function evaluations. But repeated runs of
stochastic algorithms for identical problems and settings can have dramatically
different results. Stability, which is a concern for metaheuristics and other sto-
chastic algorithms, is a statistical measure for an algorithm’s reliability. Stability is
important, because, in practice, one should not expect users to run an optimiza-
tion algorithm more than once.

For problem 1, Octopus supplements the single objective with a second objec-
tive that aims to diversify the solution set found by HypE. In problem 2, we com-
pare the Pareto-based solver with the single objective ones by calculating the
weighted sum objective for the solutions found by HypE. We compare the single-
objective solvers with HypE by recording individual UDI and DGP values and cal-
culating the resulting hypervolume. Hypervolume is a quality measure for Pareto
fronts calculated as a percentage of the “covered” objective space based on the
currently nondominated solutions.40

Results
The convergence graph on the left in Figure 10 depicts the average, current best
value found by the solvers relative to the number of evaluations on problem 1.
DIRECT is the best performing solver, and RBFOpt the second best. DIRECT finds

r Figure 8. Diagram of the room optimized
in terms of daylight. The crosses indicate the
sensor grid for simulating UDI.

r Figure 9. Diagram of the room optimized in
terms of daylight and glare. The crosses indicate
the sensor grid for simulating UDI and the cone
the camera position and view for simulating DGP.

7.5

4.
3

11.25

N

12

2
1

11

31

21
22

32
33

23

13

3
4

14

24

34
25

5

15
6

16

26

36
27

17

7

9
8

18

28
37

38
39

29

19
10

20

30

40

35

10.8

7.2

3.
6

N

3
22

32
33

23

13
4

14

24

34
25

5

15
6

16

26

36
27

17

7

9
8

18

28
37

38
39

29

19
10

20

30

40

35

12

2
11

31

21
22

13

3
4 12

2
1

11

31

21
22

13

3
4

183WORTMANN

P
E

E
R

 R
E

V
IE

W
 / S

IM
U

L
A

T
IO

N
S

0%

100%

200%

300%

400%

500%

600%

700%

800% PSO
HypE
GA
SA
RBFOpt
DIRECT

v Figure 10. Benchmark
results for problem 1. The
convergence graph on the
left displays the number
of function evaluations
on the x, and the average
objective value on the
y axis. The x axis is in
logarithmic scale (base
2) to accommodate big
differences between
objective values caused
by the penalty function.
The box plot on the right
indicates the range of
objective values found by
the six solvers in ten runs.

v Figure 11. Benchmark
results for problem 2 in
terms of the weighted
objective function.

v Figure 12. Benchmark
results for problem 2 in
terms of the hypervolume.

20%

25%

30%

35%

40%

0 40 80 120 160 200
19%
21%
23%
25%
27%
29%
31%
33%
35%
37%

DIRECT
SA

PSO
HypE
RBFOpt

GA

30%

35%

40%

45%

50%

55%

60%

65%

70%

0 40 80 120 160 200
30%

35%

40%

45%

50%

55%

60%

65%

70%

an excellent solution immediately, that is, it “gets lucky” in terms of
its initialization sequence. Note RBFOpt’s rapid progress after 15
evaluations: Here the algorithm starts profiting from the surrogate
model, while the earlier evaluations sample the objective function
with a quasi-random Latin Hypercube Design. The number of qua-
si-random samples is equal to the number of problem dimensions,
i.e., variables. The remaining solvers perform poorly. The box plot
on the right in Figure 10 indicates the range of objective values
found by the solvers in ten runs.

On problem 2, DIRECT is the worst-performing solver
because its recursive subdivision proceeds too slowly in the forty

dimensions corresponding to the variables (Figure 11). SA per-
forms comparatively poorly, while the remaining metaheuristics,
including the Pareto-based HypE, perform similarly and improve
the objective by around 40%. Opossum’s RBFOpt is the best-per-
forming solver with an improvement of 50%. For both problems,
RBFOpt is the most stable nondeterministic algorithm.

Figure 12 graphs not the algorithms’ objectives, but their hyper-
volumes. The results indicate that, on this problem, the single-
objective RBFOpt is more stable and finds more accurate Pareto
fronts than the Pareto-based HypE. The curves in Figure 12 resem-
bles the ones in Figure 11, since an improvement of the weighted

184

T
A

D
 1

 :
2

Model-based Optimization for Architectural Design

objective value implies an improvement of the Pareto front.
Figure 13 displays representative examples of Pareto fronts

found by the solvers, which further illustrate the performance dif-
ferences between them. Compared to HypE, RBFOpt has found
a shallower front, that is, it has found better tradeoffs between
maximizing daylight and minimizing glare, especially for high-day-
light solutions. (Note that, although large improvements of daylight
quality require only small increases in glare, low average DGP val-
ues can contain isolated instances of intolerable glare.)

Conclusion
The performance of optimization algorithms depends on the char-
acteristics of individual optimization problems. Nevertheless,
based on the benchmark results presented here and elsewhere41
and results from the literature,42 a rough, general recommenda-
tion can be made: Designers should apply metaheuristics primar-
ily on problems where thousands, or tens of thousands, function
evaluations are possible, direct search on problems with relatively
small numbers of variables and model-based methods especially
on problems with larger numbers of variables and limited function
evaluation budgets. Accordingly, model-based methods are partic-
ularly attractive for ADO, where design problems often are com-
plex and involve time-intensive simulations. For the complex and
time-intensive daylighting problems presented here, Opossum’s
RBFOpt is the best choice overall.

The comparison with a Pareto-based algorithm indicates that
designers should employ Pareto-based optimization judiciously
and only when a large evaluation budget is available to avoid an
inaccurate approximation of the Pareto front. Currently, model-
based optimization methods are used only rarely in ADO,43 but
results like the ones presented here highlight their potential for
optimizing building designs based on time-intensive, structural and
environmental simulations.

Nevertheless, this study takes only a small step on the road to
more in-depth and rigorous studies of the performance of optimi-
zation methods in ADO. Such studies will require a dramatically
enlarged catalogue of simulation-based benchmark problems,
(single- and multi-objective) optimization methods and results.
Another research direction is the improved integration of ADO
with architectural design processes, for example through more
interactive optimization algorithms and more insightful visualiza-
tions of design and objective spaces.

Acknowledgement
The development of RBFOpt and Opossum was supported by the
SUTD-MIT International Design Centre (IDG215001100, PIs:
Thomas Schroepfer and Giacomo Nannicini). The author thanks
the anonymous reviewers, editors and J. Alstan Jakubiec for their
detailed and valued feedback.

Notes

1. Robert F. Woodbury, Elements of Parametric Design (London;
New York: Routledge, 2010).

2. Keith Besserud, Neil Katz, and Alessandro Beghini,
“Structural Emergence: Architectural and Structural Design
Collaboration at SOM,” Architectural Design 83, no. 2 (2013):
48–55.

3. Chris Luebkeman and Kristina Shea, “CDO: Computational
Design + Optimization in Building Practice,” The Arup Journal,
2005.

4. Frédéric Imbert et al., “Concurrent Geometric, Structural
and Environmental Design: Louvre Abu Dhabi,” in Advances
in Architectural Geometry 2012, ed. Lars Hesselgren et al.
(Springer Vienna, 2013), 77–90.

5. Kenneth Holmström, Nils-Hassan Quttineh, and Marcus
M. Edvall, “An Adaptive Radial Basis Algorithm (ARBF) for
Expensive Black-Box Mixed-Integer Constrained Global
Optimization,” Optimization and Engineering 9, no. 4 (2008):
311–39; Alberto Costa and Giacomo Nannicini, “RBFOpt:
An Open-Source Library for Black-Box Optimization with
Costly Function Evaluations,” Optimization Online (Singapore
University of Technology and Design, 2014).

6. Donald R. Jones, Cary D. Perttunen, and Bruce E. Stuckman,
“Lipschitzian Optimization without the Lipschitz Constant,”
Journal of Optimization Theory and Applications 79, no. 1
(1993): 157–181.

7. Stephen G. Johnson, The NLopt Nonlinear-Optimization
Package, 2010, http://ab-initio.mit.edu/nlopt.

8. Alexander I. J. Forrester, András Sóbester, and A. J. Keane,
Engineering Design via Surrogate Modelling: A Practical Guide
(Chichester, UK: J. Wiley, 2008).

9. Rommel G. Regis and Christine A. Shoemaker, “A Stochastic
Radial Basis Function Method for the Global Optimization of
Expensive Functions,” INFORMS Journal on Computing 19, no.
4 (2007): 497–509.

v Figure 13. Pareto
fronts found during
each solver‘s most
representative (i.e., closest
to the mean) run. “Best” is
the combined front from
all solvers and runs. The
markers’ color indicates
the solver. UDI indicated
on the x-, and average DGP
indicated on the y-axis.

17.5%

20.0%

22.5%

25.0%

27.5%

30%35%40%45%50%55%60%65%70%75%80%85%

DIRECT
SA
GA

HypE

Best

PSO

RBFOpt

185WORTMANN

P
E

E
R

 R
E

V
IE

W
 / S

IM
U

L
A

T
IO

N
S

10. Holmström, Quttineh, and Edvall, “An Adaptive Radial Basis
Algorithm” (see note 5 above).

11. Thomas Wortmann et al., “Advantages of Surrogate Models
for Architectural Design Optimization,” AIEDAM 29, no. 4
(2015): 471–481.

12. Thomas Wortmann and Giacomo Nannicini, “Black-Box
Optimization for Architectural Design: An Overview and
Quantitative Comparison of Metaheuristic, Direct Search,
and Model-Based Optimization Methods,” in Proceedings of
the 21th CAADRIA Conference, ed. Sheng-Fen Chien et al.
(CAADRIA 21, Hong Kong: CAADRIA, 2016), 177–186.

13. Costa and Nannicini, “RBFOpt: An Open-Source Library” (see
note 5 above).

14. Ilya Loshchilov and Tobias Glasmacher, “Black-Box
Optimization Competition,” 2017, bbcomp.ini.rub.de.

15. Thomas Wortmann et al., “Are Genetic Algorithms Really the
Best Choice for Building Energy Optimization?,” in Proceedings
of the Symposium on Simulation for Architecture & Urban Design
(SimAUD 2017, Toronto, CA, 2017), 51–58.

16. Ibid.

17. H.-M. Gutmann, “A Radial Basis Function Method for Global
Optimization,” Journal of Global Optimization 19, no. 3 (2001):
201–227.

18. Regis and Shoemaker, “A Stochastic Radial Basis” (see note 9
above).

19. El-Ghazali Talbi, Metaheuristics: From Design to Implementation
(Hoboken, NJ: John Wiley & Sons, 2009).

20. Luis Miguel Rios and Nikolaos V. Sahinidis, “Derivative-Free
Optimization: A Review of Algorithms and Comparison of
Software Implementations,” Journal of Global Optimization 56,
no. 3 (2013): 1247–1293; Holmström, Quttineh, and Edvall,
“An Adaptive Radial Basis Algorithm” (see note 5 above).

21. A. Conn, K. Scheinberg, and L. Vicente, Introduction
to Derivative-Free Optimization, MOS-SIAM Series on
Optimization (Philadelphia, PA: Society for Industrial and
Applied Mathematics, 2009), 6.

22. Ralph Evins, “A Review of Computational Optimisation
Methods Applied to Sustainable Building Design,” Renewable
and Sustainable Energy Reviews 22 (2013): 230–245.

23. Wortmann et al., “Are Genetic Algorithms Really the Best
Choice” (see note 15 above).

24. Wortmann and Nannicini, “Black-Box Optimization” (see note
12 above).

25. Mohamed Hamdy, Anh-Tuan Nguyen, and Jan L. M. Hensen,
“A Performance Comparison of Multi-Objective Optimization
Algorithms for Solving Nearly-Zero-Energy-Building Design
Problems,” Energy and Buildings 121 (2016): 57–71.

26. Ralph Evins et al., “Multi-Objective Design Optimisation:
Getting More for Less,” Proceedings of the ICE - Civil
Engineering 165, no. 5 (2012): 5–10.

27. Anthony D. Radford and John S. Gero, “On Optimization
in Computer Aided Architectural Design,” Building and
Environment 15 (1980): 73–80.

28. Johannes Bader and Eckart Zitzler, “HypE: An Algorithm for
Fast Hypervolume-Based Many-Objective Optimization,”
TIK-Report (Zurich, CH: Computer Engineering and
Networks Laboratory (TIK) Department of Electrical
Engineering Swiss Federal Institute of Technology (ETH),
2008).

29. David Rutten, “Evolutionary Principles Applied to Problem
Solving,” 2010, www.grasshopper3d.com/profiles/blogs/
evolutionary-principles.

30. Judyta Cichocka, Will Browne, and Edgar Rodriguez,
“Evolutionary Optimization Processes as Design Tools:
Implementation of a Revolutionary Swarm Approach,” in
Proceedings of 31th International PLEA Conference (Bologna,
IT, 2015).

31. Robert Vierlinger, “Multi Objective Design Interface” (Msc
Thesis, Technische Universität Wien, 2013).

32. J. Alstan Jakubiec and Christoph F. Reinhart, “DIVA 2.0:
Integrating Daylight and Thermal Simulations Using
Rhinoceros 3D, Daysim and EnergyPlus,” in Proceedings
of Building Simulation 2011 (Sydney, AUS: IBPSA, 2011),
2202–2209.

33. Wortmann et al., “Advantages of Surrogate Models” (see note
11).

34. John Mardaljevic et al., “Daylighting, Artificial Lighting and
Non-Visual Effects Study for a Residential Building,” Velux
Technical Report (Loughborough, UK: School of Civil and
Building Engineering, Loughborough University, 2012).

35. Thomas Wortmann, “Opossum—Introducing and Evaluating
a Model-Based Optimization Tool for Grasshopper,” in
Protocols, Flows and Glitches, ed. Patrick Janssen et al.
(CAADRIA 2017, Hong Kong, CN: CAADRIA, 2017), 283–92.

36. Jan Wienold, Daylight Glare in Offices (Stuttgart, DE:
Fraunhofer IRB Verlag, 2010).

37. Jae Yong Suk, Marc Schiler, and Karen Kensek, “Investigation
of Existing Discomfort Glare Indices Using Human Subject
Study Data,” Building and Environment 113 (2017): 121–130.

38. Wortmann, “Opossum—Introducing and Evaluating” (see note
35 above).

39. Talbi, Metaheuristics (see note 19 above).

40. Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele, “The
Hypervolume Indicator Revisited: On the Design of Pareto-
Compliant Indicators Via Weighted Integration,” in EMO 2007,
ed. S Obayashi et al., vol. 4403, Lecture Notes in Computer
Science (Springer Berlin Heidelberg, 2007), 862–876.

41. Wortmann et al., “Are Genetic Algorithms Really the Best
Choice” (see note 15 above).

42. Holmström, Quttineh, and Edvall, “An Adaptive Radial Basis
Algorithm” (see note 5 above); Rios and Sahinidis, “Derivative-
Free Optimization” (see note 20 above).

43. Evins, “A Review of Computational Optimisation Methods”
(see note 22 above).

Thomas Wortmann is a PhD candidate in the Architecture and
Design Pillar at Singapore University of Technology and Design.
His research interests are computational design, benchmarking
of optimization algorithms, and interactive, visual optimization
tools based on surrogate models. Thomas is the lead developer
of Opossum, a model-based optimization tool for Grasshopper.
Opossum is available for free on www.food4rhino.com.

