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Model-based optimization is an innovative 
optimization strategy and particularly ap-
propriate for time-intensive performance 
simulations. To demonstrate this appropriate-
ness, this paper reviews simulation-based 
optimization algorithms and benchmarks 
several (single- and multi-objective) optimiza-
tion tools on two problems involving annual 
daylight and glare simulations. The benchmarks 
demonstrate that model-based optimization 
outperforms other (single- and multi-objective) 
approaches on time-intensive, simulation-
based optimization problems and thus puts 
new applications within reach. In this way, 
model-based optimization aids architectural 
designers and consultants to develop more 
resource- and energy-efficient buildings.

Model-based 
Optimization for 
Architectural Design: 
Optimizing Daylight  
and Glare in Grasshopper
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Introduction and Background
Structural, building energy, and daylighting simulations play a key role in architectural 
design processes. They allow the quantitative evaluation of design variants, while para-
metric modeling allows the fast and automated generation of design variants from 
numerical parameters.1 When designers combine parametric models with performance 
simulations, optimization algorithms find well-performing design variants. Consequently, 
simulation-based optimization is increasingly applied in leading architectural and engi-
neering practices such as SOM2 and ARUP3 and was, for example, used in the design of 
the Louvre Abu Dhabi.4

Model-based optimization is an innovative, machine learning-related optimization 
strategy and particularly appropriate for time-intensive performance simulations. To 
demonstrate this appropriateness, this paper benchmarks several optimization tools in 
Grasshopper—a popular software for parametric design and performance simulations—
on two problems involving annual daylight and, for one problem, glare simulations. These 
benchmarks include the first freely available, model-based optimization tool aimed at archi-
tectural design optimization (ADO), Opossum (OPtimizatiOn Solver with SUrrogate Mod-
els), of which the author is the lead developer. (Opossum is available as a free download at 
www.food4rhino.com/app/opossum-optimization-solver-surrogate-models.)

Model (or surrogate)-based optimization methods find good results with small num-
bers of simulations.5 This high speed of convergence is important for sustainable design 
problems such as daylighting and building energy, where a single simulation takes several 
minutes or hours to complete. Under such conditions, it is impractical to perform the thou-
sands of simulations required by population-based metaheuristics such as genetic algo-
rithms (GAs).

Global Black-Box Optimization
Unlike the majority of optimization methods, global black-box (or derivative-free) meth-
ods do not need mathematical formulations of optimization problems and—unlike local 
optimization methods—do not get trapped in local optima but instead consider the whole 
design space.

Accordingly, they are appropriate for simulation-based optimization problems in ADO. 
Such problems define the relationship between variables and performance objectives not 
with a formula but by evaluating a parametric model with numerical simulations (Figure 2), 
and often exhibit local optima and complex interdependencies between variables.

Global black-box methods must compromise between exploring the design space as a 
whole with locally exploiting promising regions. They fall into three broad categories: Direct 
search, model-based methods, and metaheuristics. The following subsections discuss the 
three categories, before introducing Pareto-based optimization.

Direct Search
Direct search methods evaluate a deterministic sequence of solutions without try-
ing to approximate the design space (Figure 3a). The well-known Hooke-Jeeves and 
Nelder-Mead Simplex algorithms are local direct search methods, while DIRECT6 is a 
more recent, global method. DIRECT subdivides the design space into hyper-boxes and 

v Figure 1 (Previous spread). 
Radial mapping of (most of) the 
simulated solutions for Problem 
2. The position of every circle 
represents the solution's 
parameters, and the color its 
performance in terms of a 
weighted sum of daylight and 
glare, on a logarithmic scale. 
The background colors are 
interpolated with barycentric 
coordinates.

The better solutions on the 
left (<22%) indicate that the 
screen should be more porous 
on the top and less porous on 
the bottom (Figure 9). There 
are several very good (<20%) 
solutions that do not form a 
clear pattern, which indicates 
several distinct screen designs 
that are close to optimal.

r Figure 2. Opossum in 
Grasshopper. The curves on 
the left link to the variables 
and the one on the right to the 
objective.

w Figure 3. Three types of 
simulation-based, black-box 
optimization: (a) Optimize the 
output of the exact simulation 
directly, (b) optimize the 
approximating output of the 
surrogate model constructed 
from prior simulation results, 
and (c) optimize and update 
the surrogate model during the 
optimization process.
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excludes hyper-boxes from further subdivision by approximat-
ing the maximum change of the performance objective for each 
box (Figure 4). This paper presents results for DIRECT as imple-
mented in the free, open-source NLopt library.7

Model-based Methods
Model-based methods approximate the design space as a whole by 
constructing surrogate models of the implicit mathematical formu-
lations of simulation-based problems. Surrogate models are much 
faster to calculate than simulations and can accelerate optimization 
processes. However, as approximations, surrogate models are less 
accurate than the underlying simulations.

Accuracy is a concern especially for approaches that complete-
ly replace time-intensive simulations with surrogate models and 
then apply optimization (Figure 3b). Improving the models’ accu-
racy requires a larger sample size, which can negate the initial 
speed advantage.

In contrast, model-based methods iteratively build and refine 
models during the optimization process (Figure 3c). At every iter-
ation, a model-based method searches its model for a promising 
solution (deterministically, randomly, or with a metaheuristic). It 
simulates the found solution and updates the model with the exact 
simulation results (Figure 5). A model-based method thus improves 
its model’s accuracy during the optimization process. For the sec-
ond optimization problem discussed in the following section, the 
final models constructed by the model-based algorithm deviated at 
most 53% from the exact objective value, but only 11% on average.

Trust region methods employ local models, while more recent, 
global model-based methods approximate design spaces glob-
ally. Global methods construct surrogate models with a variety of 
statistical (e.g., Polynomial Regression and Kriging) and machine 
learning-related (e.g., Radial Basis Functions, Neural Networks 
and Support Vector Machines) techniques. Due to their ability to 
model complex design spaces, Kriging and radial basis functions are 
particularly suitable for simulation-based problems from engineer-
ing design8 and, by extension, ADO. Opossum, the optimization 
tool presented here, interpolates design spaces with radial basis 
functions.9

Global model-based methods are particularly effective for opti-
mizing problems with time-intensive simulations and complex rela-
tionships between variables and objective.10 They converge—that 
is, find good solutions—quickly by alternating between evaluating 
the surrogate model, which is fast but approximate, and the exact 
simulation, which typically is much slower. The surrogate model not 

only improves convergence, but offers opportunities for visualiza-
tion and interaction that are relevant for ADO.11

Compared to other types of optimization methods, model-based 
methods require additional calculations to construct and search 
the surrogate model at every optimization step. However, when a 
single function evaluation takes more than a few seconds, the time 
required for these calculations is negligible.12

This study considers the performance of RBFOpt,13 a free and 
open-source, state-of-the-art library for model-based optimiza-
tion powering Opossum. Of the twenty-eight solvers competing 
in the 2015 GECCO Black-Box Competition, which consisted of 
1.000 mathematical benchmark problems with two to sixty-four 
variables, RBFOpt ranked seventh overall and first among the 
open-source solvers.14

Based on previous benchmark results from building energy 
problems,15 RBFOpt’s continuously updated radial basis function 
model quickly identifies promising areas of the design space, but, 
in some cases, hinders the algorithm from focusing on promising 
areas. In other words, RBFOpt excels in global search but has weak-
nesses in local search. (RBFOpt v3.0.1, which dates from after the 
completion of the below experiments, addresses these weaknesses 
by incorporating a trust region method.)

RBFOpt is controlled by more than forty parameters. Depending 
on individual problem characteristics, some of these parameters 
drastically affect RBFOpt’s performance.16 The most importance 
choices are between different optimization (Gutmann17 and 
MSRSM18) and interpolation methods. (RBFOpt v3.0.1 introduces 
automatic model selection as a default. With this setting, the algo-
rithm tries to choose the most accurate interpolation method—lin-
ear, multi-quadratic, cubic and thin plate spline—for each problem.) 
Opossum’s graphical user interface (GUI) reduces RBFOpt’s com-
plexity into three tabs that afford increasing levels of control (Fig-
ure 7) and offers presets that are based on intensive testing with 
mathematical test functions.

Metaheuristics
Stochastic, population-based metaheuristics19 often are inspired 
by natural processes, such as genetic evolution or “swarm intelli-
gence,” and require extensive tuning of optimization parameters. 
Due to a lack of mathematical proofs of convergence and inferior 
performance on benchmarks,20 the mathematical optimization 
community regards them as “methods of last resort.”21

Nevertheless, metaheuristics are by far the most popular cat-
egory of optimization methods in ADO, with GAs as the most 
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prominent exponent.22 Reasons for this popularity include a rela-
tive ease of implementation, wide availability, applicability to a wide 
range of problems, and a perception that metaheuristics are espe-
cially appropriate for complex, simulation-based problems.23 This 
paper presents results for single- and multi-objective GAs, particle 
swarm optimization (PSO) and simulated annealing (SA).

GAs evolve a population of solutions through genetics-inspired 
operations (Figure 6), such as crossover, mutation, and selection. 
Schooling behaviors exhibited by, for example, birds and fish inspire 
PSO, where a “swarm” of solutions converges gradually in a good 
region of the space. SA considers only a single solution. Mimicking 
the movement of an atom in a cooling metal, the solution initially 
changes more randomly and stabilizes as the “temperature” drops.

Pareto-based Optimization
Pareto-based, multi-objective algorithms, which often are GAs, 
search for solutions that perform well in terms of more than one 
performance objective. This approach is popular in ADO, but less 
so in the mathematical optimization community, leading to a com-
paratively small number of optimization methods and benchmark 
results.

This paper considers a benchmark problem with the two objec-
tives of daylight and glare, but combines the two into a single 

objective by subtracting them from each other. Alternatively, one 
can express multiple objectives as “soft constraints,” for example, 
by penalizing the weight of a structure when it exceeds stress or 
deflection constraints.24

Pareto-based algorithms do not define such weighted or penal-
ized sums, but instead optimize all objectives in parallel. Pareto-
based optimization is useful only when there is a tradeoff between 
objectives: for example, allowing more daylight into a room can 
lead to more glare. Pareto-based optimization explores such trad-
eoffs by searching for nondominated solutions, that is, solutions 
where improving one of the objectives is only possible by worsen-
ing others.

However, since Pareto-based optimization aims to not only find 
good solutions, but a set of nondominated solutions that represent 
different tradeoffs, it is less efficient than its single-objective coun-
terpart. For example, in a benchmark of a building energy problem 
with two objectives, it took 1400–1800 function evaluations for 
the Pareto fronts to stabilize.25

The ADO literature does not address the efficiency difference 
between single- and multi-objective algorithms. For example, one 
paper characterizes Pareto-based optimization as “getting more 
for less” and mentions computation time only as a general limita-
tion.26 Similarly, a foundational paper perceives an affinity between 

r Figure 5. Diagram of three iterations of a global, model-based algorithm. The dashed lines indicated the approximated design space.

r Figure 4. Diagram of three iterations of the DIRECT algorithm. Note how DIRECT subdivides promising regions of the design space while ignoring others.

r Figure 6. Diagram of three iterations of a genetic algorithm.
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the many tradeoffs addressed by architectural design and the com-
paratively smaller number of multiple objectives addressed by 
Pareto-based optimization, but acknowledges the performance 
tradeoffs of this approach only in a general sense.27

This paper speculates that architects often prefer Pareto-based 
optimization, because it offers a range of alternatives rather than a 
single result and not because it accurately represents trade-offs. It 
evaluates apples as oranges, and vice versa, by evaluating the Pare-
to-based GA HypE28 as a single-objective algorithm and comparing 
the Pareto fronts found by HypE with the fronts found implicitly by 
the five single-objective algorithms.

Optimizing Daylight and Glare
To evaluate RBFOpt and Opossum, we compare its performance 
with the remaining global solvers available in Grasshopper: the GA 
and SA included in Galapagos,29 the PSO of Silvereye,30 the DIRECT 
algorithm included in Goat and HypE included in Octopus.31 We 
test the solvers on two problems involving time-intensive daylight-
ing simulations: optimizing a screened façade with discrete louver 
angles for daylight and optimizing a perforated façade with con-
tinuous opening sizes for daylight and glare. We simulate daylight 
and glare with DIVA-for-Rhino 4.0.32

Problem 1 (15 Discrete Variables)
The first optimization problem, defined by Wortmann et al.33 and 
presented here with new and expanded benchmark results, con-
siders a single room that is located on the Southwest corner of a 
building in Singapore (Figure 8).

The room has two facades, one with nine façade components 
and one with six. Every façade component has micro-louvers, 
which, for each façade component, can take angles between 0° and 
180° (in increments of five). In other words, there are 37 daylight-
modulating types of façade components.

The optimization problem aims to find a configuration of façade 
components that maximizes Useful Daylight Illuminance (UDI). 
UDI measures the annual percentage of time during which a sen-
sor point receives an amount of daylight that is sufficient for office 
work, while avoiding glare and excessive heat gains (300–3000 
lux). One simulates UDI via a grid of sensor points (Figures 8 and 
9).34

In addition, we penalize configurations with angle differences 
larger than 10 degrees between neighboring façade components 

to ensure a coherent appearance of the façade and a subtle modu-
lation of daylight. The penalty function in the following equation 
computes a penalty value pi for an individual façade component 
with angle di. If the angle difference with the previous neighbor 
is smaller than ten degrees, the penalty pi is zero; otherwise, it is 
a squared error term. The minimization objective is 100% minus 
average UDI u(x) plus the sum of the penalties of the fifteen façade 
components p(x):

min f (x)=1.0−ū(x)+ pi(x)
i=0

n∑

On an Intel Xeon E5-1620 CPU with sixteen threads and 3.6 
GHz, one evaluation of this objective, that is, generating the para-
metric geometry and performing the daylighting simulation, takes 
about 75 seconds.

Problem 2 (40 Continuous Variables)
The second problem, defined by Wortmann35 and presented 
here with a more rigorous comparison of the Pareto fronts, also 
considers a room in Singapore (Figure 9). The room has a south-
facing façade, perforated by 1.692 openings of varying sizes. The 
continuous weights of a grid of forty attractor points, which are 
the problem’s variables, controls these sizes and thus the façade’s 
appearance and daylight performance.

This optimization problem aims to find a façade design that 
maximizes UDI and minimizes Daylight Glare Probability (DGP). 
DGP measures glare as a percentage for a specific camera view 
and point-in-time and classifies this percentage as impercepti-
ble, perceptible, disturbing, or intolerable.36 A recent evaluation 
of five glare indices concludes that all indices exhibit inaccuracies 
and inconsistencies. However, the authors state that “DGP shows 

r Figure 7. Opossum’s GUI. The first tab lets users choose one of three pre-sets of parameters, and start and stop the optimization. The second tab 
provides options for benchmarking. The third tab offers full control by accepting command line parameters for RBFOpt.



182

T
A

D
 1

 : 
2

Model-based Optimization for Architectural Design

the best evaluation performance among the five indices” and that DGP “would be 
still very effective when we would like to find out whether or not discomfort glare 
exists,” which is the case for the problem at hand.37

Although a more realistic glare assessment requires several camera views 
representing the users’ true field of view, we calculate this value only for a single 
camera to hasten the many runs required for benchmarking. To further reduce 
calculation time, we approximate annual glare as an average of 59 representative 
daylight hours instead of a full annual glare simulation.38 Although less accurate 
than a full annual simulation, this approach yields a good qualitative assessment 
of the presence or absence of discomfort glare.

Assuming that quality of daylight and avoidance of glare are equally important, 
subtracting average annual DGP g from average annual UDI u yields a single min-
imization objective (both UDI and DGP are in the range [0,1]):

 min f (x)=(1.0−u(x)+ g(x))/2

On an Intel Xeon E5-1620 CPU with sixteen threads and 3.6 GHz, one simula-
tion of UDI and approximated annual glare takes about 90 seconds.

Methodology
We optimize both problems for 200 function evaluations: ten times for each 
nondeterministic solver (RBFOpt, GA, SA, PSO, and HypE) and one time for the 
deterministic DIRECT.

Choice of parameters significantly affects the performance of optimiza-
tion algorithms, especially for metaheuristics, and is problem-dependent.39 
Nevertheless, we assume sensible default parameter choices on part of the solv-
ers’ authors. Sensible defaults are important when, as in architectural practice, 
time pressure does not allow for extensive parameter tuning but calls for solvers 
that are efficient and immediately usable by nonexperts. Accordingly, we employ 
default parameters, except for the GA and HypE, where we halve the population 
sizes to 25 to achieve a larger number of generations.

Following standard benchmarking methodology, we evaluate the solvers rela-
tive to the number of function evaluations, that is, simulations, and not relative to 
running time. This methodology ensures the results' independence from comput-
ing speed and implementation details. In practice, compared to the time required 
for simulations, running time differences between solvers often are insignificant.

We employ two evaluation criteria: speed of convergence and stability. Speed 
of convergence, which is the more critical, measures how fast an algorithm 
approaches the optimum in terms of function evaluations. But repeated runs of 
stochastic algorithms for identical problems and settings can have dramatically 
different results. Stability, which is a concern for metaheuristics and other sto-
chastic algorithms, is a statistical measure for an algorithm’s reliability. Stability is 
important, because, in practice, one should not expect users to run an optimiza-
tion algorithm more than once.

For problem 1, Octopus supplements the single objective with a second objec-
tive that aims to diversify the solution set found by HypE. In problem 2, we com-
pare the Pareto-based solver with the single objective ones by calculating the 
weighted sum objective for the solutions found by HypE. We compare the single-
objective solvers with HypE by recording individual UDI and DGP values and cal-
culating the resulting hypervolume. Hypervolume is a quality measure for Pareto 
fronts calculated as a percentage of the “covered” objective space based on the 
currently nondominated solutions.40

Results
The convergence graph on the left in Figure 10 depicts the average, current best 
value found by the solvers relative to the number of evaluations on problem 1. 
DIRECT is the best performing solver, and RBFOpt the second best. DIRECT finds 

r Figure 8. Diagram of the room optimized 
in terms of daylight. The crosses indicate the 
sensor grid for simulating UDI.

r Figure 9. Diagram of the room optimized in 
terms of daylight and glare. The crosses indicate 
the sensor grid for simulating UDI and the cone 
the camera position and view for simulating DGP.
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v Figure 10. Benchmark 
results for problem 1. The 
convergence graph on the 
left displays the number 
of function evaluations 
on the x, and the average 
objective value on the 
y axis. The x axis is in 
logarithmic scale (base 
2) to accommodate big 
differences between 
objective values caused 
by the penalty function. 
The box plot on the right 
indicates the range of 
objective values found by 
the six solvers in ten runs.

v Figure 11. Benchmark 
results for problem 2 in 
terms of the weighted 
objective function.

v Figure 12. Benchmark 
results for problem 2 in 
terms of the hypervolume.

20%

25%

30%

35%

40%

0 40 80 120 160 200
19%
21%
23%
25%
27%
29%
31%
33%
35%
37%

DIRECT
SA

PSO
HypE
RBFOpt

GA

30%

35%

40%

45%

50%

55%

60%

65%

70%

0 40 80 120 160 200
30%

35%

40%

45%

50%

55%

60%

65%

70%

an excellent solution immediately, that is, it “gets lucky” in terms of 
its initialization sequence. Note RBFOpt’s rapid progress after 15 
evaluations: Here the algorithm starts profiting from the surrogate 
model, while the earlier evaluations sample the objective function 
with a quasi-random Latin Hypercube Design. The number of qua-
si-random samples is equal to the number of problem dimensions, 
i.e., variables. The remaining solvers perform poorly. The box plot 
on the right in Figure 10 indicates the range of objective values 
found by the solvers in ten runs.

On problem 2, DIRECT is the worst-performing solver 
because its recursive subdivision proceeds too slowly in the forty 

dimensions corresponding to the variables (Figure 11). SA per-
forms comparatively poorly, while the remaining metaheuristics, 
including the Pareto-based HypE, perform similarly and improve 
the objective by around 40%. Opossum’s RBFOpt is the best-per-
forming solver with an improvement of 50%. For both problems, 
RBFOpt is the most stable nondeterministic algorithm.

Figure 12 graphs not the algorithms’ objectives, but their hyper-
volumes. The results indicate that, on this problem, the single-
objective RBFOpt is more stable and finds more accurate Pareto 
fronts than the Pareto-based HypE. The curves in Figure 12 resem-
bles the ones in Figure 11, since an improvement of the weighted 
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objective value implies an improvement of the Pareto front.
Figure 13 displays representative examples of Pareto fronts 

found by the solvers, which further illustrate the performance dif-
ferences between them. Compared to HypE, RBFOpt has found 
a shallower front, that is, it has found better tradeoffs between 
maximizing daylight and minimizing glare, especially for high-day-
light solutions. (Note that, although large improvements of daylight 
quality require only small increases in glare, low average DGP val-
ues can contain isolated instances of intolerable glare.)

Conclusion
The performance of optimization algorithms depends on the char-
acteristics of individual optimization problems. Nevertheless, 
based on the benchmark results presented here and elsewhere41 
and results from the literature,42 a rough, general recommenda-
tion can be made: Designers should apply metaheuristics primar-
ily on problems where thousands, or tens of thousands, function 
evaluations are possible, direct search on problems with relatively 
small numbers of variables and model-based methods especially 
on problems with larger numbers of variables and limited function 
evaluation budgets. Accordingly, model-based methods are partic-
ularly attractive for ADO, where design problems often are com-
plex and involve time-intensive simulations. For the complex and 
time-intensive daylighting problems presented here, Opossum’s 
RBFOpt is the best choice overall.

The comparison with a Pareto-based algorithm indicates that 
designers should employ Pareto-based optimization judiciously 
and only when a large evaluation budget is available to avoid an 
inaccurate approximation of the Pareto front. Currently, model-
based optimization methods are used only rarely in ADO,43 but 
results like the ones presented here highlight their potential for 
optimizing building designs based on time-intensive, structural and 
environmental simulations.

Nevertheless, this study takes only a small step on the road to 
more in-depth and rigorous studies of the performance of optimi-
zation methods in ADO. Such studies will require a dramatically 
enlarged catalogue of simulation-based benchmark problems, 
(single- and multi-objective) optimization methods and results. 
Another research direction is the improved integration of ADO 
with architectural design processes, for example through more 
interactive optimization algorithms and more insightful visualiza-
tions of design and objective spaces.
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