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ABSTRACT 
Disability glare, visual impairment due to extreme brightness or contrast, can be caused by intense 

reflections from new constructions nearby existing transportation or building infrastructure. A case study analysis is 
performed of a disability glare hazard at an airport created by the installation of a large array of photovoltaic panels 
between an air traffic control tower and the aircraft taxiway. The panels reflect blinding quantities of daylight into 
the control tower, produce temporary after images and dangerously obscure taxiing aircraft. The existing FAA 
guidelines for installation of solar technologies are discussed relative their shortcomings in identifying the glare 
hazard.  

High dynamic range photography is used to analyze the glaring situation at the airport, and the authors 
propose a maximum brightness threshold of 30,000 cd/m2 based on the physiology of human vision and the 
brightness of tasks necessary for air traffic controllers at the case-study airport. Detailed reflectivity and three-
dimensional models of the photovoltaic panels and the airport are created and validated against measured data. 
Using these models, an annual analysis is performed of the glare hazard. This analysis is displayed temporally using 
graphs and spatially using images that indicate where the glaring reflections originate. Such information is useful in 
identifying the potential for disability glare before new constructions are built. Finally, the authors use the new 
method to analyze designs for remediation of the glare hazard. 

 
INTRODUCTION 

New constructions such as photovoltaic (PV) panels or buildings can cause glare due to intense reflections 
of sunlight from their surfaces. Such reflections can literally occur in blinding quantities, preventing occupants from 
performing tasks. This effect is known as disability glare. Disability glare measurably impairs vision, reducing the 
contrast of the retinal image by the presence of a very bright light source in the field of view (1). To remedy such 
issues after construction is expensive, and those affected must tolerate the glare until the problem is remedied. In 
order to address the issue of glare hazards from new constructions, this paper presents a general method for 
analyzing glare hazards based on three-dimensional (3D) models produced during the design phase, measured 
material properties and physically accurate lighting simulations.  

The new method is presented through a case study analysis of glare at an airport caused by intense 
reflections from a PV array consisting of 2,478 panels located between the airport’s air traffic control tower (ATCT) 
and an airplane taxiway. Specular reflections from the PV array are so extreme that they prevent the visibility of 
aircraft on the taxiway and cause temporary after images that impede the viewing of computer monitors inside the 
ATCT. As such, the reflections at the case-study airport meet the qualifications to be considered disabling.  

The PV array was analyzed according to Federal Aviation Administration (FAA) best practice guidelines 
for the installation of solar technologies prior to its construction; however, the original analysis did not detect the 
glare hazard. Thus, there is a need to define a clear process through which to conduct glare prediction analysis that is 
useful during the design of new constructions that have the potential reflect large quantities of daylight.  A case 
study approach is taken to address this need through an analysis of the airport’s glare problem. First, a review of 
existing methods for analyzing glare from specular surfaces is conducted. Following that, the authors reproduce the 
problem in a physically-based daylighting simulation software capable of predicting reflections from new designs 
before they are constructed and outline steps necessary to reproduce our method. The simulations use physically 
accurate material models that account for specular and diffusing reflective surface properties of PV panels. Side-by-
side comparisons of high dynamic range (HDR) photographs and the authors’ physically-based renderings confirm 
the accuracy of these models. Next, an annual analysis is conducted using a ten-minute simulation interval for every 
daylit hour in the year. Following this, the likelihood of experiencing disability glare is displayed spatially and 
temporally in order to understand the time, location and intensity of potential glaring reflections. Finally, the new 
method is used to analyze proposed remediation strategies of the disability glare problem at the case-study airport. 
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Dynamic Range of Human Vision 
To assess the impact bright specular reflections have on perception, considering the physiology of human 

vision is critical. The eye is a logarithmic sensor capable of perceiving 12 log units of luminance; however, human 
vision is only capable of resolving a portion of the luminous scale at any given time based on the visible luminous 
environment (3). Specifically, the adaptation luminance is the brightness level the eye is adapted to that determines 
what range of the luminous scale is perceivable.  

Ferwerda, et al. suggest that the adaptation luminance should be half the value of the highest perceived 
luminance, which will vary depending on the outside brightness, solar position, and reflectivity of glare-inducing 
surfaces (4); however, this works primarily for normal viewing conditions where the sun and glaring reflections are 
not present. In the case of disability glare analysis where the task is known, it makes sense to choose the adaptation 
luminance relative to the desired tasks. From Figure 1, focusing on the monitor (255 cd/m2), is the lowest task 
luminance level, which is reasonable considering the luminous range of a typical computer monitor is between 10 
and 300 cd/m2. The highest task luminance level is focusing on the taxiway (8,901 cd/m2). 

Generally, the human eye can recognize between two and three orders of magnitude of luminance variation 
at any time (3). Taking the mean brightness of the two task luminances, approximately two orders of magnitude of 
luminous difference can be visualized (3, 5). This means that in order to view planes on the taxiway while 
maintaining the ability to read the monitor, luminance levels in the line of sight would need to be less than 30,000 
cd/m2 observing these two orders of magnitude as a rule. Therefore the authors propose a brightness of 30,000 cd/m2 
as a threshold at which the probability of experiencing disability glare is likely. The measured value of 250,000 
cd/m2 from the PV panels in Figure 1 is well above this threshold. Air traffic controllers attempting to view the 
runway experience after images and are prevented from visually identifying aircraft on the taxiway. Although the 
sky is very bright and often above 30,000 cd/m2, the operable shades present in the ATCT can be used to block the 
brightness of the sky; however, they cannot be lowered to obstruct the PV array without also blocking the taxiway. 
Until the glare problem is remedied, the airport is covering the PV array with tarps, which prevent disability glare 
but have the side effect of also preventing the generation of electricity.  

 
Existing Disability Glare Metrics from Specular Reflections 

The FAA defines interference from solar panels concerning airspace penetration, reflectivity, and 
communication systems interference (6). As this analysis relates to visual disability, the authors are concerned with 
the regulations dealing with reflectivity. All solar installations at airports must include an “assessment of reflectivity 
including time periods when reflection may contact [the ATCT] and aircraft.” The FAA provides three methods of 
analyzing potential glare problems: 

1. A qualitative analysis of potential impact in consultation with [air traffic control staff], pilots, and 
airport officials, 

2. a demonstration field test with solar panels at the proposed site in coordination with FAA Tower 
personnel or, 

3. a geometric analysis to determine days and times when an impact is predicted. 
Method 1 is potentially inadequate as the involved parties may not have the experience or the ability to 

assess the potential glare hazards involved with the proposed PV system; however, it is probably adequate when PV 
panels will be installed far away from any critical visual areas. Method 2 is inadequate as the field test is performed 
during a single moment; however, the sun changes its position in the sky throughout the entire year. A test at a 
single time may miss glare hazards during other parts of the year. Method 3, geometric analysis, could analyze 
potential glare hazards throughout the year; however, there is currently no guidance on its implementation beyond 
two example figures that portray a perfectly specular reflection at four times during the year as if from a mirror. 
Such an analysis ignores potential glaring reflections during other times of the year. More importantly, a purely 
geometric analysis neglects the true behavior of reflected light from PV panels. Such an analysis could miss 
identifying potential glare hazards where an analysis that considers forward-scattering when daylight is reflected 
would not. 

Ho et. al propose a geometric analysis method that accounts for diffuse and specular reflective properties as 
well as the form of a reflecting surface in order to assess glare hazards (7). The result of their geometric calculation 
is evaluated based on irradiance at the retina and the size of the glaring source. It is based on previous research on 
the physiology of the human eye to experience after images and retinal burning. The method is useful for detecting 
problems and quickly iterating through solutions; however, it does not provide spatial feedback regarding where the 
glare originates from at any given time.  
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After using a HDR photographic method to derive angular-dependent material reflection data, the authors 
undertook an annual analysis of the case-study airport with a known occurrence of disability glare. The new method 
produces charts (Figure 4) that illustrate the time and intensity of glaring reflections and images (Figures 5 and 6) 
that show the location of glaring reflections. Such results allow intuitive design changes based on observations. For 
example, Figure 5 suggests that a more northern site for the PV array would have been beneficial. The authors’ new 
method was used to analyze two proposed remediation strategies. This analysis found that a material solution using 
a less-reflective PV panel was not viable in this case, but that a geometric solution to rotate the PV panels would 
remedy the glare hazard.  
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