Grasshope,
You can get hourly EUI values buy simply adding in two more Native GH components:

However, I just want to be clear that I have not built in automated capabilities to get EUI numbers because I don’t agree with the practice of using site EUI as a metric to evaluate the thermodynamic performance, environmental impact, or monetary value of a building. I disagree with this practice for the same reason that there are no “totalThermalLoad” and “thermalLoadBalance” for simulations run with full HVAC. I can summarize these reasons in the following way:
When we run a simulation with ideal air loads, the heating/cooling values we get are THERMAL ENERGY that is directly added to or removed from the zone. In this way, we can draw a rough parallel between these two types of energy since they are are generally of a similar type and quality. As such, I am ok with adding them together to get total thermal load or subtracting them to get a sense of thermal load balance.
However, when we run a simulation will full HVAC, the heating/cooling values that we get are usually HEATING FUEL ENERGY and ELECTRICITY respectively. Fuel energy and electricity are fundamentally two different types and qualities of energy. To cite the second law of thermodynamics, the exergy (or the capacity to do work) of electricity is much greater than that of fuel. This is evident in the fact that, to produce a given unit of electricity, I often have to burn at least 3 units of fuel energy (though this can be much more for inefficient plants). With each step in a power plant - making steam, turning a turbine, turning a generator - there are significant energy losses. This difference in exergy is also evident in the fact that there are so many more things that I can do directly with a unit of electricity than I can do with the same unit of fuel energy. I can use electricity to directly refrigerate, produce light energy or power a motor just as easily as I can use to to cook, produce hot water, or heat a space. While I can cook, make hot water, or heat a space directly with fuel energy, refrigeration and lighting are much more difficult. For this reason, I do not feel comfortable adding electricity and fuel together either in the totalThermalLoad output or in a site EUI metric.
Still, the use of site EUI has become so ingrained in the industry that I have to acknowledge it and at least show users how it’s calculated. In my view, it’s an ad-hoc metric that was invented to deal with previously limited amount of information on energy sources.
Instead of using site EUI, I would recommend using the following metrics depending on what you are trying to evaluate:
Utility Cost / Square Meter - to measure the monetary value of a building to an owner or user
Kg CO2 / Square Meter - to measure the environmental and climatic impact of a building
Emergy / Square Meter - to measure the overall thermodynamic performance of a building
The first two are actually fairly easy to calculate these days just by researching your site’s utility rates or grid energy mixture and multiplying the building electricity or fuel by their respective rates. I will add in some capabilities to Honeybee soon to make it even easier for you to get these values from your EPW file and databases of utility rates/grid mixture. Emergy is much harder to calculate as you have to trace all your energy sources all of the way back to the sun but there are a number of experts at work to make this calculation possible (probably in the next few years, we may have much easier ways to calculate it).
Hope this helps explain the current setup.
-Chris
Hourly EUI.gh (555 KB)